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1.0 INTRODUCTION 

The emission-absorption (E/A) technique (Ref. 1) for determining spatial profiles of 
temperature and 'partial pressure of selected species in exhaust plumes of combustion 
sources has been utilized in several applications at the AEDC. The E/A technique develops 

by applying band model theory (Ref. 2) to the solution of the radiative transfer problem 

for the spatial distribution of the projected radiance and transmittance from a 
cylindrically symmetric radiating/absorbing medium. These radiance and transmittance 

data are then used in a radial inversion technique, based on the aforementioned band 

model theory, to provide radial profiles of the temperature and partial pressure of the 

radiating species (Ref. 1). 

The data necessary for the determination of the temperature and partial pressure 
profiles consist of experimental infrared radiance and transmittance measurements, which 

are subject to normal experimental errors. Because the analytic approach for the 
technique is of necessity complex, the determination of  uncertainties in the resultant 
temperature and partial pressure profiles, because of these experimental errors, is not 
straightforward. The complexity of the problem is compounded by the fact that any 
calculated temperature and partial pressure inside the plume is dependent on, or 
correlated .to, the calculated temperature and partial pressure in the outer portions of the 
plume. However, since the emission-absorption technique is an important diagnostic tool 

for rocket and jet engine exhausts, knowledge of the uncertainty in the temperature and 
partial pressures due to the experimental uncertainties is required. There are two elements 
to the error and the random uncertainty. It is possible to determine bias error 

propagation by single application of the data reduction process, but the determination of 
random error propagations is not so straightforward. Propagation of these random 

uncertainties is the subject of this subject. 

There is a variety of ways in which propagated experimental random uncertainty 
bounds may be assigned to the determined temperature and partial pressure, most of 

which are heuristic in nature. For example, the analysis of a certain set of data may be 
repetitively performed, with each set of measured data being randomly varied within the 
observed experimental bounds. Observation of the variation in the resulting temperature 
and pressure profiles provides an uncertainty estimate. However, such an approach 
generally requires many computations, and the cost can become unreasonable. 

There is an analytic approach to determining the uncertainties which provides an 

estimate of the propagated random uncertainty without recourse to repetitive or heuristic 
techniques. Although it provides an a priori estimate of the uncertainty, dependent only on 
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the observed data characteristics and an analytic approximation, it is considerably more 

difficult analytically than the repetitive approach. The analytic :determination of  
uncertainties has additional merit in that the formulation and development of the 
fundamental equations allows for straightforward extension to account for variations in 

parameters other than the direct experimental measurements. 

In the following discussion, the equations describing this analytic approach for the 
random uncertainty propagation based on the variational dependence of the physical 

parameters are developed in convenient functional form for subsequent analysis. Certain 

definitions from statistical theory are introduced, and their implications to the present 

work are described. The method is applied to two illustrative examples, an analytic and 
experimentally obtained set of data, to demonstrate typical results. 

2.0 ANALYTIC APPROACH 

The functional considerations leading to the description of the emission-absorption 
problem in terms of a linearized system of equations are described in this section. The 
detailed equations, including description of a systematic accounting system used in the 
computer code are described in Appendix A. Subsequent to the linearization of the 
emission-absorption problem, the approach by which a variance-covariance matrix of the 
measurements is propagated through the linear transformation to yield the variance- 
covariance matrix of the results is presented. 

The propagation of the variance-covariance matrix represents, in principle, the 
solution to the uncertainty propagation problem since the elements of the resultant 
matrix are related to the desired uncertainties. The diagonal elements of the 
variance-covariance matrix represent the variances which are the second moment about 
the mean of the probability distribution function of the parameters being measured or 

computed. The off-diagonal elements represent the covariances which are the joint 
moment about the mean of two parameters. Since experimental data are usually 
independent, the variance-covariance matrix for the experimental data is usually one with 

the principal diagonal being the square of the observed standard deviations of the 

corresponding measurements and the off-diagonal elements set to zero. Thus, with the 

determination of a linear transformation between the experimental measurement and the 

inverted temperature and pressure, the determination of the variance-covariance matrix of 
the temperature and partial pressure is immediate. 

6 
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It should be pointed out that the results presented herein, although developed for 
the E/A problem, are a general property of linear transformations, and are thus not 
restricted to the determination of uncertainties in temperature and pressure in the E/A 
problem. Rather, the same fundamental approach can be used for determination of 
uncertainties in radiance and transmittance because of  uncertainty in temperature and 
pressure or because of uncertainty in any of the parameters in the analytic model. The 
general results of the analysis can further be applied to any situation in which an analysis 
of data can be described by a linear transformation. Thus, when data are preconditioned 
by a smoothing process which is linear, e.g., linear least squares fitting, the 
variance-covariance matrix of the smoothed data can be obtained by application of the 

results of this section. 

2.1 EMISSION-ABSORPTION TRANSFORMATION MATRIX 

As described in Ref. 1, the measurements required for the emission-absorption 
technique consist of a series of radiance and transmittance measurements (experimentally 
the absorptance) spatially scanning the combustion (e.g., a turbojet or rocket exhaust 
plume). The plume is assumed to be formed from concentric isothermal, isobaric 
cylinders. By examining, for example, the k th measurement of the radiance (Nk), and 
transmissivity (Tk) (Fi& 1), each of the parameters is described and defined by the 
contribution of the properties (partial pressure and temperature) of the emitting- 

absorbing specie from each of the zones along the optical path. 

2k-1 / • • • / k \ 1 
Nk, T k 

Figure 1. Diagram of cylindrically symmetric zones contributing 
to the k th measurement of radiance and transmittance. 

Functionally, one can write (with the cylindrical symmetry assumption) 

" Nk = N k ( T I , ' " ' T k ;  PI . . . . .  Pk ) 

rk - rk (Tz . . . . .  Tk; P1 . . . .  , Pk ) 

(1) 

7 
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Expanding each term in a Taylor series, truncating after the linear terms, and 
rearranging, one fan write 

2k--1 0N k 2k--1 8N k 

i=l i i=l t 

2•1 o~rk 2 k- 1 ar  k 
8rk = ~ 8Ti  + Z ~ P '  

aP 
i= 1 1 i= 1 

(2) 

where the variational "8" notation is utilized for the differences normally expressed in 
the Taylor series expansions and i is a dummy index identifying the location of a 
particular zone in the series. As is usual in the Taylor series expansion, Eq. (2) is strictly 
valid only for small 8T and 8P, or where the higher derivatives are much smaller than the 
first derivatives. 

This linearization approximation represents the major analytic assumption in this 
work but is common in the analysis of  nonlinear problems. 

Note that although the emission-absorption source is assumed to be cylindrically 
symmetric, 

Tk+j = Tk_ j 

Pk+j = Pk- j  

j = 0 , 1  . . . . .  k - 1  (3)  

the summations in Eq. (2) are through 2k-1. This is because, in Eq. ~1), the functional 
dependence on the temperatures and pressures is in fact implicit, and the contribution to 
the measured radiance and transmittance from the k + j zone is different than the k - j 
zone. This implicit relationship makes Eq. (2) deceptively simple in that the partial 
derivatives must be obtained through successive applications of the chain rule. Hence, the 
contributions for each of the 2k-I zones must be calculated separately in the 
summations. The development of the detailed terms for expressing 8N and 8T in Eq. (1) are 
indicated in Appendix A. 

8 
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If equations similiar to those fn Eq. (1) are written for each measurement and 

expanded by Eq. (2), the result can be symbolically expressed by the matrix equation, 

-JN~ aN- 

OT I OP 

Or I Or 

OT I OP 

6T 6N 

~P L ~r 

(4) 

in which the unsubscribed symbols represents a submatrix or vector of appropriate terms 
obtained by proper arrangement and collection of similar terms in the system of 

equations, Eq. (2). Equation (4) is the form of linear equations 

,~X = D (5) 

with formal solution 

x = A -  D ( 6 )  

where the identifications 

] o, x D L 
(7) 

are obvious. The X and D vectors each have 2k elements and represent the variations of 

the temperature and pressure and of  the radiances and transmittances, respectively. The 
matrix A -I is a 2k x 2k matrix and can be thought of as the transformation matrix from 
the data (N,r) space to the properties (T,P) space. It is a linear transformation with 
certain convenient properties for variance analysis as is described below. 

2,2 VARIANCE-COVARIANCE MATRIX PROPAGATION 

From elementary statistical theory (Ref. 3), the variance is defined as the second 
moment about the mean for a single observable. The covariance is the joint moment 
about the means of two observables. The covariance thus involves integration over the 

joint probability function, and if the observables are independent, the covariance is zero. 
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In the matrix notation, the variance-covariance matrix may be expressed 

~D = <(D - pD ) (D - pD)T> (8) 

where D is the column vector of the observable, gD is the vector of the mean value for 
each of the D, ~D is the variance-covariance matrix, and the T superscript indicates the 
transposed matrix. The bracket notation expresses the expected value of  the enclosed 
quantities and, for a matrix, is the matrix of the expected values of the elements. ~D is a 
symmetric matrix in which the diagonal elements are the variances of the data and the 

off-diagonal elements express the covariances. 

If the D values are used in a linear transformation 

X = CD (9) 

where C is the rectangular transformation matrix and X is a vector, then also 

~x = C~D ( I0 )  

for the mean value vector in the transformed space. The variance-convariance matrix for 
the X is formed analogous to the definition above, or: 

Z x  = <(X - vx) (X-  Vx)T> (11) 

Using the transformations (Eqs. (9) and (10)) gives 

~x : <C(D - ,u D) (D - FD ) T c T >  (12) 

The expected value is a linear operator, thus 

~x -- C <(D - ~D ) (D - FD)T> C ? (13) 

and the central term is just .the variance-covariance matrix of the D observables (Eq. (10)) 
o r  

~x = C '~o cT (14) 

Thus, if the variance-covariance matrix (]~D) of a set of data (D) and the linear 
transformation (C) from D to X are known, then the variance-oovariance matrix in the 

10 
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transformed space (~x)  is immediately determinate. The transformation matrix (C) in 

Eq. (14) is to be identified with the partial derivative matrix (A q ) in Eq. (9). Although 

this identification is not immediately obvious, it can be seen readily by noting that Eq. 

(9) also expresses the linearization of  a Taylor series expansion of the (N,¢) data. Thus, 

Eq. (14) becomes the means by which the variance-covariance matrix of  the k radiances 

and transmissivities is propagated through the inversion technique to the 

variance-covariance matrix of the temperatures and pressures. 

Equation (14) is not restricted to the analysis of the E/A problem, however. Any 

analysis or experimental operation which can be cast into a form such as Eq. (9) 

responds to the foregoing treatment. Least-squares curve fitting represents a large class of 

commonly used data smoothing tech.niques which are amenable to the foregoing analysis. 

2.3 APPLICATION 

In order to utilize Eq. (14), it is necessary to determine the variance-covarianc¢ 

matrix for the radiance and transmissivity measurements (]~D). When the data are 
independent and uncorrelated, as is usually the case for raw experimental data, the 

off-diagonal elements, the covariances, can be taken as zero. The diagonal elements, the 

variances, are generally taken to be the square of the standard deviation of  the raw data. 

However, raw data are usually smoothed in some manner, say with linear 
least-squares curve fitting techniques or with Fourier filtering. If the smoothing technique 

is linear, as it is in each of the two aforementioned numerical techniques, then one can 

write an equation similar to Eq. (9) describing the technique for smoothing. The diagonal 

variance-covariance matrix for the independent raw data measurements can then be 
propagated through the smoothing technique by use of Eq. (14). That resultant 
symmetric variance-covariance matrix for the fitted data is then propagated through the 

inversion technique to yield the final variance-covariance matrix for the temperature and 
pressure. 

3.0 RESULTS 

The considerations described above have been applied to the emission-absorption 

radial inversion technique, and a computer  program has been written to effect the 

calculations. The calculation procedure has been applied to two sets of data described 

below. These data are to be considered as indicative of typical results rather than yielding 
definitive bounds. 

The first sample case to be described is purely a numerical model. The calculations 

were performed using the radiance and transmissivity of water-vapor at a wavelength of 

11 
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2.5 ~t. The radiance and transmittance were calculated for an imagined water vapor 

temperature and. partial pressure profile. These data were then perturbed randomly about 

the calculated values using a uniform probability distribution function. The magnitude of  
the perturbation for each datum was eonstrainted to be no greater in absolute value than 

5 percent of  the centerline value of  the quantity. These simulated raw data were then 
least-squares curve fit to a 4th-degree polynomial evaluated at the same positions as the 
data, and the variance-covariance matrix for the fitted data was determined. 

The radiances are plotted in Fig. 2, and transmittances are plotted in Fig. 3. The 
rectangles on each plot illustrate the original theoretical profile and geometry. The 

symbols are the values resulting from the curve fit used for subsequent analysis, and the 

bars are the uncertainty limit to be applied at each data point. In this manner, an 

experimental situation is simulated in which the data are assumed to be randomly 

distributed about some unknown function (the rectangles), and with a known error 

bound (the bars) on the experimental data. The raw data are smoothed, and these results 
(the points) are used for subsequent analysis. 

For these determinations, the original data variance-covariance matrix was diagonal, 

with the elements being the square of  the observed uncertainties. The least-squares 

polynomial fitting equations were cast into a form consistent with Eq. (9), and the 
resultant variance-covariance matrix, because of  propagation through the curve fit, was 

calculated according to Eq. (14). This symmetric variance-covariance matrix was then 

propagated through the inversion procedure according to Eq. (14). Only the values of  the 
elements of  the matrix C and ~D vary from application to application. 

These data were then inverted for water vapor temperature and partial pressure, and 

the propagated variance-covariance matrix was determined. These results for temperature 
are shown in Fig. 4 and for partial pressure in Fig. S. The inverted results are denoted by 
symbols and the propagated uncertainty by the bars. The magnitude of the uncertainties 

is the square root of  the diagonal elements of  the variance-covariance matirx. For 
comparison purposes, the original profiles are shown by the rectangles. 

The results show that, for the initial 5-percent centerline uncertainty on the original 
data, the centefline temperature is determinate within a 10-percent uncertainty and the 

centerline partial pressure is determinate to within 23-percent uncertainty. These 

uncertainties are more or less typical for this calculation except in the outer zones of  the 

plume. As can be seen in Figs. 2 and 3, however, the signal-to-noise ratio in these outer 

zones is near one or less; therefore, the large uncertainty in that data is to be expected. 

As final comment  on this first case, it should be noted that the choice of  fitting function 

will affect the final error propagation result through the effect on the appropriate 

transformation matrix C. Some other choice of  fitting function may easily change the 
propagated errors reported here. 

12 
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The second case to be described is representative of typical measurements obtained 

from a laboratory fiat flame burner burning methane and air. The emitting and absorbing 

specie in this experiment was carbon dioxide at a wavelength of  4.5 p. The raw data were 
least-squares curve fit to a polynomial function of displacement, and the spectral radiance 

and transmissivity were reevaluated at positions convenient to analysis. The raw data and 

results of the curve fit are shown in Fig. 6. In this figure, the raw data are represented by 
the points, and the curve fit used to generate the data for subsequent analysis is 

represented by the solid line. The symbol size indicates the maximum observed 

experimental uncertainty in these raw data, typically 3 percent of the maximum value, 
which can be taken as a 30 bound. As before, the original data variance-covariance matrix 

is diagonal with the nonzero elements the square of the observed uncertainties. This 
diagonal matrix is then propagated successively through the curve-fit procedure and the 

inversion procedure according to repeated applications of  Eq. (14). The uncertainties 
reported on the succeeding analysis plots are the square roots of the elements on the 
principal diagonal of the final symmetric variance-covariance matrix and thus represent 

the propagated 30 bound. 
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The results of the inversion of these data and the propagated error bound are shown 
in Figs. 7 and 8. The CO2 temperature (Fig. 7) shows approximately 5-percent 

uncertainty on the centerline, while the partial pressure (Fig, 8) shows approximately 
15-percent uncertainty on the centerline. Further, as is seen in Figs. 7 and 8, the error 

propagation characteristics away from the centerline are improved over the centerline 
characteristics. This behavior is attributed to the geometry and uniform property profile 
of the flat flame burner. The central portions of the flame do not contribute materially 
to the observed spectral radiance and transmissivity (see Fig. 5). Hence, large variations in 
either or both the specie temperature or pressure can be allowed, provided there remains 

insignificant contribution to the centerline values of the data. 

Extension of these representative results to the general case must be approached 

cautiously. These data were not chosen for any particular characteristics, and the assumed 
standard deviations are not necessarily consistent with any quantitative physical evidence. 
Further, the way any particular set of data is handled with respect to linear least-squares 

curve fitting, Fourier filtering, or other data smoothing technique will change the final 
result. Each set of data must be analyzed on its own merits and characteristics. 
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4.5 

4.0 CONCLUDING REMARKS 

A method of determining the propagation of errors in the E/A technique was 

developed and described functionally. The E/A technique, used to determine temperature 
and partial pressure profiles, results from applying band model theory to the solution of 

the radiative transfer problem for the spatial distribution of the projected radiance and 
transmittance from a cylindrically symmetric radiating/absorbing medium. The method 
provides a means by which uncertainties in the determined temperature and partial 
pressure profiles, represented by a variance-covariance matrix, can be determined by 
direct calculations based on the uncertainties (variance-covariance matrix) of the 
experimental data. The development of the detailed equations describing the necessary 

terms in the analytic description of the propagation is indicated in Appendix A. 

A computer program to perform the calculations described herein has been coded 

and was used to provide illustrative calculations for two typical emission-absorption 
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profiles. The results, which must be considered unique to those profiles shown, suggest 
that the propagated temperature uncertainty is generally slightly larger than the data 
uncertainty while the partial pressure uncertainty is considerably larger. 

The analytic approach presented here can be extended straightforwardly to provide 
descriptions of the variational dependence of the radiance and transmittance on other 
parameters, and indeed should be. The work does not address the uncertainty of the 
results based on the uncertainty of the band model parameters but can be adapted for 
such a study. Another possible useful adaptation of the approach here would be to 
determine the uncertainty of the experimental measurements because of fluctuations in 
the temperature and partial pressure profiles induced by plume flicker and turbulence at 
selected positions along the line of sight. Each of the aforementioned studies, although 
detailed, develop straightforwardly from the approach and equations described in this 
report and Appendix A. 
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APPENDIX A 
DETAILED EQUATIONS FOR PARTIAL DERIVATIVES 

OF EMISSION/ABSORPTION EQUATIONS 

The emission/absorption (E/A) technique is used for determining the temperature 
and pressure profiles in exhaust plumes from combustion sources (e.&, turbojet or rocket 
engine exhaust plumes). The E/A technique develops by applying band model theory to 
the solution to the radiative transfer problem for the spatial distribution of the projected 
radiance and transmittance from a cylindrically symmetric radiating/absorbing medium. 
Because the technique is used for the analysis of experimental data, a means of assessing 
the effect of the experimental uncertainties on the result is needed. The functional 
approach for this error propagation analysis is contained in the body of the report. 

The major task in providing the analytic approach to performing the emission 
absorption uncertainty propagation analysis is the development of the detailed algebraic 
equations consistent with a meaningful accounting system for relating the mathematical 
symbols to identifiable physical parameters..These equations and the accounting system 
are described in this appendix. 

The plume, shown schematically in Fig. A-l, is modeled by a series of concentric 
cylinders, within each of which the species temperature and partial pressure is constant. 
Measurements of radiance and transmittance are taken along a line of sight through each 
succeeding rin& With this geometrical model, the solution to the radiative transfer 
problem can be approximately expressed as 

2k--1 
Nxk = g Nb(Ti, k) (r i_l ,  k - ri, k) (A-l) i= 1 

where 

~.~ rj, k = 2Tr (-~)j,kf(Xj,k) (A-2) 

2h c 2 p5 
Nb(Tj'k) = [ h c ~ t  

exp - -  - .1 
(A-3) 

In the above equations, the subscript k identifies a particular measurement which in 
turn identifies a particular line of sight. For the double subscripted parameters, it is seen 
that the trailing subscript identifies this particular fine of sight, whereas the leading 
subscript identifies a particular zone in the plume along the line of sight. This leading 
subscript starts with one on the measurement side of the plume and increments 
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Figure A-1. Cross-sectional schematic diagram of inhomogeneous 
cylindrically symmetric source. 

sequentially to the source side of the plume with a final value 2k-l. The temperature and 
partical pressure of the central zone (Tk,k and Pk,k) are the unknown parameters. Note 

that, with this accounting system, the transmittance measurement (Txk) Can be 

expressed: 

r~k = r2k-l,k (A-4) 

Use of  the Curtis-Godsen approximation (Ref. 1) provides the def'mitions 

,k 

i 
i=l y ~i,k (s/d)i,k (Y/d)i,k 

J 
~l~i,k (s/d)i,k 

CA-5) 

[i~l [i,k (s/d)i,k] 2 
X. 

j,k = ~ (A-f) 
2n 5' (s/d)i, k (y/d) i=l fi,k i,k 
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/ 

In Eqs. (A-5) and (A-6), (s/d)i,k and (7/d)i.k are known specific functiom of the 
temperature and partial pressure of the i th zone along the k th line of sight. 

The development of the error propagation analysis equations described in the body 
require the partial derivatives of the radiance and transmittance with respect to the 
temperature and partial pressure in order to determine the elements of the propagated 
variance-covariance matrix. For the temperature, 

aNx'-'-~k = Z aNb(Ti'k) (ri"l'k - ri'k) + Nb(Ti'k) ,k 
aTm'k i--I aTm'k aTm'k  Tm,kJ  

(A-7) 

f( la(I"/d)j, k /_~l af aXj, k } arJ.-----'k = -2nrj,k X j,k ) ~ + 
aTm,k aTm,k ,k aXj,m aTm,k 

(A-8) 

I ( a ( 7 / d )  m ,k c9(s/d) m ,k ] 
- + (y/d)m, k Olr/d)j, k ~m,k s/d)m, k OTm,k ~ ] 

aTm, k J 
(s/d)i, k i=l ~i,k 

J 
X Ei, k (s/d)i, k (y/d)i, k iffi I 

Ii~l [i,k (s/d)i,kl 2 
~m,k 

a(s/d)m, k 
aTm,k 

(A-9) 

I kl a(s/d)m'k 
2 ~ Fi,k (s/d)i, ~m,k 0Tin. k 0Xj, k xffil 

J 
0Tm'k iffil~ 2~fi,k (Y/d)i, k (s/d)i,k 

Ei,k (s/d)i, • i= I 

li~l 2~r~i,k (y/d)i,k (s/d) i,k 1 
2 ( \ d/m,k 

a(s/d)m, k 
aTm,k + /'-~) m, k 

~(Y/d)m'k 1 
c~Tm,k 

(A-10) 
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There are similar expressions for the partials derivatives with respect to pressure which 

are not repeated here. Their form is similar to Eqs. (A-7) through (A-10), replacing the 

symbol T by the symbol P. 

The remaining functions not specifically defined to this point are the (s/d), (~,/d), 
and f(X). Each of these depends on the particular form assumed for the absorption 
coefficient, line broadening parameter, and the specific form assumed for the band 
model. A "description of  the various options is included in Ref. 4. As a specific example, 

let 

/'-d")i To Pi = Ki ~'i ~" ° (A-11) 

/"d-/i /---~- / C T° Pi = i Ti Po (A-12) 

where Ki and (l /d)i  are tabulated functions of temperature and wavelength, determined 
experimentally, and C is a constant. In  this case, since aTi/aTj ffi 0 for i ~ j, 

Pi aKi P' To O(s/d)i To K. t 
aTi Ti Po aTi 1 Po Ti 2 

(A-13) 

and 

a(F/d)i To Pi a(1/d)i / ~t Pi To 
= C C 

aTi Ti Po aTi Po Ti 2 
(A-14) 

and the similar concomitant expressions for the partial derivatives with respect to partial 

pressure. 

If the random band model and an exponential line strength distribution are assumed, 

the resultant curve of  growth is 

t('X) = (1 + X) -½ (A-15) 

and the derivative 

a~ 1 (1 + (A-16) . . . .  X) - s / 2  
ax 2 

is immediate. 
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Thus, one has at hand the specific detailed expressions for determining the terms 
comprising the partial derivatives in Eq. (4). The necessary equations for the partial 
derivative with respect to temperature are formed by substituting Eqs. (A-8) through 
(A-16) into Eq. (A-2) for the partial derivative of Nxk with respect to temperature, 
keeping the appropriate subscripts compatible. There are comparable expressions for the 
partial derivative with respect to partial pressure, requiring only to change the symbol T 
with the symbol P, except for the partial derivatives of the band model parameters (s/d) 
and (-//d). In this case, 

T 1 
O(s/d'i = K. o ( A - 1 7 )  

Op i ] Ti Po 

0{Y/d)i = C ( ~  T° I (A-18) 
0D i \ d ] i  Ti Po 

since Ki and (1/d)i are independent of the partial pressure. 

As final comment, it is to be noted that the partial derivative of Nxk also requires 
the partial derivatives of Ti,k. Thus, as the expansion is developed, the partial.derivative 
of Nxk will include the term (()T2k.l,k/()Trn,k) (note Eq. (A-7). Hence, since 
Txk ---- T2k.l, k (Eq. A-4), one has at hand immediately the terms necessary to complete 
the partial derivative description required by the uncertainty propagation analysis 
described in the body of the report. 
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A 

C 

D 

l id 

f(X) 

h 

K 

k 

N 

P 

s/d 

T 

X 

r ld  

~Id 

/,t 

NOMENCLATURE 

Matrix of partial derivatives defined in Eq. (7) 

Linear transformation matrix from observable space to transformed space, 
Eq. (9), Used to indicate a constant in the Appendix 

Speed of light, 2.997925 x 10 l°  cm/sec 

Vector of observable, or data, values 

Line broadening parameter, cm -I 

Band model curve-of-growth 

Planck's constant, 6 .626196 X lO -27 ere sec 

Absorption c.oefficient 

Boltzmann's constant, 1.38062 x l 0  -I 6 ere/OK 

Path length, cm 

Spectral radiance, watts/sr/cm2/# 

Partial pressure, atm 

Average line strength parameter, Eq. (A-1 l )  

Temperature, °K 

Vector of transformed data, Eq. (9) and hand 
model function agreement, Eq. (A-6) 

Equivalent average line width parameter, Eq. (A-5) . 

Average line width parameter, Eq. (A-12) 

Wavelength, # 

Column vector of mean values 
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SUBSCRIPTS 

0 

b 

D 

k 

m 

X 

3.14159265 

Variance-covariance matrix 

Transmittance 

Wave number, cm -I 
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Indicates reference properties 

Denotes Planck's blackbody function 

Indicates the observable or data space 

Dummy index used as a counter 

Index indicating the central zone of a slice across, the cylindrically 

symmetric combustion source, or, the corresponding measurement of 

projected radiance or transmittance. 

Indicates.an arbitrary zone in the k th slice across the source 

Indicates transformed space for variance-covariance matrix, or, represents 

experimentally determined quantity in the appendix 
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